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Equivalence of the generalised grid and projection methods for 
the construction of quasiperiodic tilings 
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Theoretische Physik, Eidgenossische Technische Hochschule, CH-8093 Zurich, Switzerland 

Received 16 August 1985 

Abstract. The two main techniques for the generation of quasiperiodic tilings, de Bruijn’s 
grid method and the projection formalism, are generalised. A very broad class of 
quasiperiodic tilings is obtained in this way. The two generalised methods are shown to 
be equivalent. The standard calculation of Fourier spectra is extended to the whole general 
class of tilings. Various dpplications are discussed. 

1. Introduction 

The recent discovery of a new phase of A1-Mn alloy (Shechtman et a1 1984) exhibiting 
icosahedrally symmetric diffraction patterns has led physicists’ interest to quasiperiodic 
tilings. Prototypes of quasiperiodic tilings are the famous Penrose patterns (Gardner 
1977, Penrose 1979). For these, a detailed algebraic theory had been developed by de 
Bruijn (1981). He showed that these tilings can be constructed from the so-called 
‘pentagrid’. This construction has a nice geometric interpretation: a Penrose pattern 
can be viewed as the projection of a surface in a 5~ cubic lattice onto a suitable plane. 

de Bruijn’s ideas were soon generalised by Kramer and Neri (1984). In their 
prophetic work, published well before Shechtman’s discovery, they constructed 3D 

icosahedrally symmetric tilings by projecting a 3D lattice hypersurface in a 6~ cubic 
lattice onto a suitable 3-space. These tilings are composed of the two rhombohedra 
discussed earlier by Mackay (1981). 

After a first attempt by Levine and Steinhardt (1984) along slightly different lines, 
several authors (Elser 1985, Duneau and Katz 1985, Kalugin et al 1985) interpreted 
the results of Shechtman et a1 in the spirit of Kramer and Neri. All these authors 
made use of the fact that the projection formalism offers an ingenious way of calculating 
the Fourier spectra analytically. Also other structural properties are studied most 
conveniently in the projection framework. For instance, Elser (1985) was able to 
calculate the frequency of occurrence of any given finite subpattern. On the other 
hand, the grid technique is best suited for the construction of tilings on a computer, 
yielding an algorithm that is much more transparent than a direct application of the 
projection method. 

In this paper we introduce generalisations of both the grid and the projection 
technique. In this way we are able to construct a broad class of quasiperiodic tilings, 
e.g. such with any desired point symmetry. For the projection method, similar proposals 
have been made already by Duneau and Katz (1985). The main point is then to prove 
the equivalence of the two generalised methods. Our proof is a constructive one. It 
thus allows us to switch from one scheme to another depending on which one is more 
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convenient for the purpose. In this way, various techniques originally developed for 
one method also become available for the other. We believe that this will provide new 
and powerful tools for the study of quasiperiodic tilings. 

This paper is organised as follows. After briefly reviewing the ‘classical’ grid and 
projection methods, we introduce our generalisations. Then the equivalence of the 
two generalised methods is proven. Using this proof, in § 5 the projection technique 
of calculating Fourier spectra is extended to the whole general class of quasiperiodic 
patterns constructed earlier. We close with two examples. First we discuss 2~ tilings 
with n-fold point symmetry. Then a new principle is presented for the construction 
of quasiperiodic tilings containing large periodic regions. 

2. de Bruijn’s grid method 

Let {g,}l=l,..,5 be a star of unit vectors pointing to the vertices of a regular pentagon. 
We call them grid vectors. The pentagrid (or simply grid) G5 is defined as the union 
of five arrays of equidistant parallel lines orthogon 1 to the vectors g,: 

(1) 

The grid parameters yI  E R are translations of the arrays relative to the origin?. We 
assume the y l  to be such that nowhere do more than two grid lines intersect. Such 
grids are called regular. 

G , = { ~ ~ E ~ l x * g I - y / = k l ;  1 ~ 1 ,  . . . ,  5, ~ { E Z } .  

To every point y E E’ we assign a vector K ( y )  E Zs through 

U y )  = TY * gl - YI 1 i =  1, .  . . , 5  ( 2 )  

where [XI = min{n E Zln 2 x}. Let xo be an intersection point of two grid lines and 
U(xo)  a small neighbourhood of xo containing no other intersection points. From (1) 
and ( 2 ) ,  it follows that on U(xo) the vector function K ( y )  takes on four different values 
K(xo, j ) ,  j = 1, . . . ,4. One readily notes that the four vectors 

point to the vertices of one of the two Penrose rhombuses. The set of rhombuses 
defined by all intersection points of the grid form a perfect tiling (de Bruijn 1981), i.e. 
one with no holes or overlaps. 

3. The projection method 

In this section we review the projection method as discussed by Duneau and Katz 
(1985). For simplicity, we first restrict ourselves to cubic lattices. More general ones 
will be included later in this paper. 

Let 3 be the union of N arrays of hyperplanes in E N  : 

2= {X E E N  / x *  h l -  Y I =  k / ;  1 = 1,. . . , N, kl E Z} (4) 

where {hl} l=l , . .  ,N is an orthonormal basis of E N. It will turn out that the yi occurring 
in (4) can in fact be identified with the grid parameters introduced in the last section. 

t Note that our y differ in sign from those of de Bruijn (1981). 
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The points where N hyperplanes intersect are the vertices of a simple cubic lattice L 
given by 

Clearly, the yI are the coordinates of the origin of L. Let E D  be a D-dimensional 
subspace of E N .  We define an open strip S around E D  by 

N 

S = { X = X , ~ +  a , h , , , l x , , ~  E D ,  a , ~ ] - l , O ] V i }  
t = l  

where h , ,  is the component of h, orthogonal to E D .  In other words, S is generated 
by moving a unit cube along E D  in such a way that its corner with the highest coordinates 
is always contained in E D .  

From the construction of S it follows that for generic y there is a unique D- 
dimensional lattice hypersurface E contained in S. The vertices of E are the corners 
with the lowest coordinates of those unit hypercubes of the lattice which have non-zero 
intersection with E D .  The tiling is then the orthogonal projection of E onto E D .  It is 
composed of the projections of the (;) different unit D cells of the lattice. 

The connection to the grid method consists in the following observations. The grid 
G, has to be identified with the intersection YfI E D ? .  2 divides E D  into open 
regions, and with everyone of these we can associate a cube of the lattice intersecting 
with E D. The projections of the corners with the lowest coordinates of these cubes 
can then be calculated. This is precisely what is done in the grid method. 

de Bruijn’s Penrose pattern constructed in the preceding section can be obtained 
by choosing N = 5 ,  D = 2 ,  and by properly embedding the subspace E’ in E’. For 
details see 0 8 or the original paper of de Bruijn (1981). 

4. The generalised grid method 

We extend the grid method along three lines. 

D-dimensional grid which is the union of ( D  - 1)-dimensional hyperplanes in E D. 

( i )  We construct tilings of any dimension D. For this purpose, we define a 

(i i)  The grid vectors g, can be any N vectors in E D  which together span E D .  
(iii) The vectors which span the tiles (the tiling vectors) need not to be identical 

to the grid vectors. With every grid vector g, we can associate an essentially freely 
chosen tiling vector r,. The only restriction is that, for every D-tuple ( i l , .  . . , i D )  of 
indices, the corresponding D-tuples of grid and tiling vectors, (g,,, . . . , g l , )  and 
( t , , ,  . . . , qD), span a volume of the same orientation. From geometrical considerations 
in the next section it will become clear that this condition is necessary and sufficient 
for the tiling not to overlap. This is true at least for dimensions D e 3, and we conjecture 
that it holds for any D. 

Following these three points, we define an N grid G N  c E D  by 

where 2, = gr/IgI/. The orthogonal distance between two neighbouring hyperplanes of 

t Note that our terminology differs from that of Kramer and Neri (1984). They use the term ‘grid’ for 2. 
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the Ith array is thus lgfl. Again we assume the grid to be regular: there are no points 
where more than D hyperplanes intersect. As before, we define a vector function 
K :  E ”  + ZN by its components: 

i = 1, . . . , N. (8) 

On a small neighbourhood of an intersection point xo of D grid hyperplanes, K ( y )  
takes 2” different values K ( x o ,  j ) ,  j = 1, . . . , 2 O .  The vectors 

K ( Y )  = I1gil-l * (Y * it - 

(9) 

point to the vertices of a D-dimensional parallelepiped. We claim that the 
parallelepipeds corresponding to all intersection points of the grid form a perfect tiling 
of E”, provided the ‘non-overlapping condition’ is satisfied. This will follow from the 
correspondence of the above grid method with the generalised projection method 
presented in the next section. 

5. The generalised projection method 

The ‘classical’ projection method is extended with respect to the following three points. 
( i )  The formalism easily applies to general, not necessarily cubic, lattices. If 

{hf},=l,,,,,N is a basis in E N ,  the definition corresponding to (4) is 

2’ = {x  E E N  Ix * 6 - yI = kl - Ihl(; I = 1, . . . , N, k, E Z} (10) 

where = hl/lhll .  The points where N hyperplanes of B intersect form a lattice L 
which is generated by that basis { b , }  in E N  which spans an elementary cell of 2’. The 
strip S around a D-dimensional subspace E” is still given by ( 6 ) ,  but with { h , }  replaced 
by { b i } .  For orthogonal lattices, { b , }  is identical to { h , } .  Since Y n  E” has to be 
identified with the grid GN, we call E” the grid space and denote it by E g .  

(ii) The unique D-dimensional lattice hypersurface 1 contained in S is projected 
onto the tiling space E F, a D-dimensional subspace of E N  which is not necessarily 
parallel to E g. The grid space and the tiling space thus have to be carefully distin- 
guished. 

(iii) We apply a general regular linear transformation T :  E + E F to the projected 
pattern. The tiling thus is obtained by applying a linear transformation A to the 
hypersurface E, where A is the product of the orthogonal projection P onto E F and 
a subsequent linear transformation T within E F. 

The first two points have already been mentioned as possible extensions by Duneau 
and Katz (1985). 

Remark. If we want to avoid overlapping tilings, we are not completely free any more 
in embedding the tiling space in E ”, once the lattice and the grid space are fixed. We 
have to embed E? such that the orthogonal projection P of the lattice hypersurface 
I; onto E 7 is an injective mapping. This is the case if it is possible to choose orientations 
on the hypersurfaces I; and E? such that P is (everywhere) orientation preserving. 
The generalised projection method and the non-overlapping condition are visualised 
in figure 1 for the simple case N = 2, D = 1. In figure l ( b )  one sees that for either 
orientation on Z there are segments on Z where P changes the orientation. Bearing 
this geometrical situation in mind, the reader will easily verify that the non-overlapping 
condition stated for the generalised grid method is in fact the correct one. 
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- E: 
7 T 

Figure 1. Visualisation of the projection procedure for the simple case N = 2, D = 1. The 
non-overlapping condition is satisfied in ( a )  and violated in ( b ) .  

6. The equivalence of the two generalised methods 

From the previous arguments it has become clear that every tiling constructed by the 
generalised projection technique can also be obtained by the generalised grid method. 
Recall that we have assumed a generic position of E Z ,  i.e. we assume that 2 n E is 
a regular N grid. The extension to singular N grids and grid space positions is 
straightforward, see e.g. d e  Bruijn (1981). It remains to show that the converse is true 
as well. 

Let us consider a fixed tiling, defined by a regular N grid GN and a set of tiling 
vectors { t , } , = , ,  ,,,. We can always find a lattice 9 of hyperplanest 

2 = {x E E N  / X  * & - yI  = k l .  Ihll; I = 1, . . . , N, kl E Z} (11) 

such that the grid Gf: is just the intersection of 9 with some D-dimensional subspace 
of E N .  This subspace thus has to be identified with the grid space E Z .  In (11) we 
assume, of course, that the vectors {/I,},-,, ,N generating 9 are linearly independent. 

Note that the vectors h, and the grid vectors g, have to be enumerated consistently. 
The vector h, points from one hyperplane of 2 to the next in the same array, and so 
it should be g, which connects the intersections of these two hyperplanes with the grid 
space E : .  

The strip S around E g, containing a unique D-dimensional lattice hypersurface 
2,  is again given by ( 6 ) ,  but with h, replaced by b,. The main point is now to find the 
correct embedding of the tiling space, containing the tiling vectors, in E N .  (The tiling 
vectors r,  are supposed to be fixed within E ? . )  In general, we can neither hope that 
it is possible to choose the grid and the tiling spaces to be the same nor that the tiling 
vectors are the projections of the lattice vectors b, onto the tiling space. This can easily 
be derived from the results of Hadwiger (1940) (the same arguments can be found in 
Coxeter (1973)) or from a simple counterexample for N = 2 ,  D = 1. Therefore, let us 
consider a ‘preliminary’ (arbitrary) embedding I?: c E” of the tiling space, and denote 

f Note that the choice of this lattice is not unique. In fact, there is a huge variety of possibilities to choose 
2. 
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by { the corresponding tiling vectors. We define a linear transformation A: E N +  
i ? ~  E N  by its action on the basis { l ~ , } ) = ~ ,  .N:  

Ab, = { i = 1, . . . , N. (12) 

Since the orthogonal complement of the kernel of A, (ker A)', and the preliminary 
tiling space have the same dimension, there exists an orthogonal transformation 
R :  E N  + E N ,  which transforms onto (ker 2)'. The action of R on the orthogonal 
complement of is irrelevant for our purposes. The 'final' tiling space is now 
identified with (ker A)', E?= (ker The linear transformation A = R 0 A maps 
the lattice hypersurface onto E:. In particular, the tiling vectors are given by 

t, = Ab, = R 0 Ab, i = 1, . . . , N. 
Since the kernels of A and A are the same, E: and ker A are orthogonal. Hence, A 
has the property 

A = A o P =  ( A t  E 3 . P  (13 )  

where P is the orthogonal projection onto E ?  and A 1 E ? denotes the restriction of 
A to E F. Therefore, we can identify 

T = A  1 E? (14) 

which completes the proof that the two generalised methods are equivalent. 
We close this section with some remarks. 
(i) The independence of the grid vectors and the tiling vectors allows us to fix the 

topology of the tiling and the shapes of the tiles independently from each other. In 
the projection formalism, this corresponds to the freedom of choosing the grid space 
and the tiling space independently. 

(ii) The lattice 2' in E N  is not uniquely specified by the grid. One may ask therefore 
whether, given a grid and  a set of tiling vectors t,, there exists a special choice for the 
lattice, for which E 7 can be embedded in such a way that the t, are just orthogonal 
projections of the lattice vectors b,, i.e. T = 1. It is easy to find examples in the simple 
case D = 1, N = 2 ,  where this is impossible. However, we d o  not know the general 
conditions one has to impose on the grid and the tiling vectors in order to reduce A 
to a bare projection ( T  = U ) .  

(iii) The question whether or not the tiling has any translational symmetry can 
easily be answered within the projection formalism. Since the tiling is a linear transfor- 
mation of some subset of the strip S, it has a translational symmetry if and only if this 
is the case for S. This in turn is true if and only if the grid space E? contains a lattice 
vector U. In  formal terms, every lattice vector U E L contained in E g  leads to a 
translational symmetry Au of the tiling (for examples see 0 8). 

An interesting insight can be gained by fixing the lattice 3, the tiling space E? 
and the transformation T, but allowing the grid space E ?  to vary. By varying E we 
change the topology of the tiling, while the shapes of the tiles are kept fixed. If we 
keep the change in the orientation of E small enough, an  arbitrary large portion of 
the tiling containing the origin is left unchanged. In particular, since there are always 
large lattice vectors almost parallel to E g ,  by a slight change of E D  we can turn a 
non-periodic tiling into a periodic one with a large unit cell, keeping fixed a considerable 
portion around the origin. Hence, by looking at a finite piece of a tiling, we can never 
decide whether it is part of a truly non-periodic tiling or  of a periodic one with a large 
unit cell. 
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(iv) Further generalisations of the grid method exist. The hyperplanes of the grid 
GE need not be arranged periodically; the grid method, with a suitably defined vector 
function K ( y ) ,  still yields perfect tilings. The correspondence to the projection 
framework is somewhat more complicated, however, and we do not discuss it here. 
We just stress that the tiling cannot be obtained by simply arranging the hyperplanes 
of the lattice 3 aperiodically. The aperiodic lattice, when transformed by A, would 
lead to a pattern consisting of tiles whose shapes depend on their location. This is 
obviously not the case for the tiles generated by the grid method, whose shapes are 
defined by fixed tiling vectors. 

7. Fourier transformation 

The particular properties (13) and (14) of the linear transformation A make it easy to 
apply the recently developed methods for the evaluation of Fourier spectra. A is the 
product of an orthogonal projection P :  (S n L )  + E ?  and a linear transformation 
T :  E ?  + E ?. We therefore subdivide the calculation into two steps. We first determine 
the Fourier transform of the projected pattern and then include the effect of the 
transformation T. 

For the following, it is convenient to use the orthogonal decomposition E N  = E ?@ 
E g L .  For each x E E N ,  we write x = xIl +x,, where xll E E? and x, E E gL. In order to 
make the notation simple, we use the density of lattice points, 

instead of the lattice L itself (see definition (5)).  Following Zia and Dallas (1985), 
we write the projected density as 

Q(q) = 5 dN-DXLCs(XII, x,) PL(xli, XL) 

r 

where Cs (xi, ,  x,) is the characteristic function of the strip S, and the tilde denotes the 
Fourier transform with respect to x,. In contrast to the case of Zia and Dallas (1985), 
Cs is xl1 dependent because E and S are not parallel here. The Fourier transform 
&kll) of o ( x I l )  is just a convolution: 

&k,l) = dDk(l 1 d"-D'ki Vs(kil - k i ,  - k l )  pL(ki, k : )  

where k' = kll + k :  . Vs is the Fourier transform of Cs and p r ( k )  the Fourier transform 
of p r ( x ) ,  i.e. the density of points in the reciprocal lattice L. Therefore &kiI) is a 
weighted sum of 6 functions. 
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Now the transformation T can easily be incorporated. We denote the trancformed 
density by QT(xil); after some algebra, we find 

where T+ is the adjoint of T. Inserting this result into (15), we get the Fourier transform 
9 ( k , l )  of the final pattern: 

9 ( k i l )  E Q( T'kll) = d"k'V,( T'kll -kil, - k i )  * p , ( k ' ) .  (18) 

8. Symmetric two-dimensional grids 

In this section, we discuss the special class of 2~ tilings generated by grids whose grid 
vectors {g,}t=l, ,., form an  N-fold symmetric star, i.e. point to the vertices of a regular 
N-gon. The tiling vectors t ,  are assumed to have the same directions as the grid vectors. 
For later convenience, we choose the normalisations 

g, = ( ~ / 2 ) " ~ e ,  t ,  = ( 2 / ~ ) " * e ,  (19) 

We now describe how to obtain these tilings by the projection method. As it turns 

(20) 
where the components of y are the grid parameters y, and { h / } / = l ,  is an  orthonormal 
basis of E N .  The high symmetry of the problem allows the application of powerful 
group theoretic methods. The point group of 2 is the hyperoctahedral group R(  N). 
Its natural representation D" is reducible under subduction to the subgroup C, c 
fl( N) of all cyclic permutations of the basis vectors of the lattice. Its decomposition 
depends on whether N is even or odd: 

(with the unit vectors e, forming an N-fold symmetric star). 

out, for our choice of grid and tiling vectors it is possible to use a cubic lattice 

Y={xE  E ' [ ( x - ~ )  * h , = k , ;  k , = l , .  . . , N, I E Z }  

N odd 

(The upper index denotes the dimension of the representations; [ n / 2 ]  is the largest 
integer smaller than or equal to n/2.)  The invariant subspace U' of one of the 2~ 

representations is spanned by the basis 

Starting from de  Bruijn's arguments for the special case N = 5 it is straightforward to 
show that the grid construction corresponds to the orthogonal projection P of ( L  n S) 
onto U' (here S is the strip around U' defined by (6) and (22)).  It is easy to show 
that the grid and tiling vectors that correspond to our projection construction are 
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indeed given by (19). In the language of the generalised grid method we have therefore 

A = P  i.e. T =  1 
E2 - E :  - u2 
7- G -  . 

From remark (iii) in 5 6, it follows that the tilings have a translational symmetry Pu 
if there exists a lattice vector U E L and real numbers r and s such that 

The condition that U E  U* is a lattice vector means that 

It is easy to see that this can only be satisfied for N = 2 ,  3, 4, 6, which are just the 
allowed crystal symmetries. 

Obviously, the generalised grid method allows the construction of 2~ quasiperiodic 
patterns with any point symmetry. This is in contrast to the results of Levine and 
Steinhardt (1984). Using a different construction, they get, besides the allowed crystal 
symmetries, a rather restricted set of possible point symmetries ( N  = 8, P or 2P, where 
P is a prime number). The difference may be due to additional conditions imposed 
by Levine and Steinhardt, e.g. self-similarity. 

The number M ,  of different tiles (where we d o  not distinguish between different 
orientations) of a tiling generated by a symmetric N grid and a symmetric star of tiling 
vectors is easily found to be 

where again [XI is the largest integer smaller or equal to x. Interestingly enough, M N  
coincides with the number of incommensurate intervals Levine and Steinhardt (1984) 
need in their alternative construction of quasiperiodic lattices. 

In figure 2 we present a tiling exhibiting 12-fold symmetry. Its tiles are a square 
and two rhombuses, one with a 60" and one with a 30" angle. This tiling looks strikingly 
similar to electron microscope images of a new phase of Ni-Cr alloy recently discovered 
(Ishimasa e? a1 1985). 

9. Quasiperiodic tilings with periodic inclusions 

As a final application we discuss a new principle for the generation of quasiperiodic 
patterns containing arbitrarily large periodic regions. We illustrate this principle with 
a simple example. Take, e.g. a 5-grid, in which two arrays of grid lines are narrowed 
with respect to the remaining ones, as shown in figure 3 ( a ) .  We observe that 

( i)  to all intersection points of two given grid arrays, there corresponds a unique 
rhombus having a unique orientation; 

(ii) the rhombuses corresponding to two adjacent intersection points have one 
common edge (by 'adjacent', WL! mean that the two intersection points are not separated 
by any grid line). 
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Therefore the intersection points lying in a region bounded by thin grid lines (see 
figure 3 ( a ) )  give rise to rhombuses that are arranged periodically. Note, however, that 
5-fold symmetry is destroyed by this procedure. An example is shown in figure 3( b). 

Figure 2. Pattern with 12-fold bond orientational symmetry. Its Fourier spectrum consists 
of a 12-fold symmetric arrangement of 8 peaks filling reciprocal space densely. 

i a )  ( b )  

Figure 3. ( a )  Example of a grid yielding periodic inclusions. The areas bounded by the 
thin grid lines generally contain a lot of intersection points of the same type, leading to 
adjacent tiles of the same type. ( b )  Tiling with periodic inclusions. The tiles are the 
Penrose rhombuses. 
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